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S4.1 Summary

Here we report the details of the case studies used in the main text. Each section
considers a case study, presenting first the mathematical model (as a kinetic
model based on ordinary differential equations), together with the nominal val-
ues of the model parameters. Then we discuss how the pseudo-experimental data
was obtained. Usually more than one set of experimental data was considered:
one set for calibration, and another set for cross-validation. The experimen-
tal conditions subsections give details on sampling times, stimuli levels and
profiles, initial conditions, etc. The resulting data sets can be found in Addi-
tional File 2. Finally, the calibration subsections give details on the estimated
parameters, numerical settings of the solvers and other practical considerations.

S4.2 Biomass batch growth (BBG)

S4.2.1 Mathematical model

This model describes microbial growth in a stirred fed-batch bioreactor as de-
scribed by Rodriguez-Fernandez [1], but neglecting the inflow. It is a simple
description of the conversion of substrate to biomass. The simplified scheme of
the reactions can be seen in figure S4.2.1. The dynamic equations and observ-
ables are written as

dCb

dt
= µmax

CsCb

Ks + Cs
− kdCb

dCs

dt
= −µmax

yield

CsCb

Ks + Cs

g1(t) = Cb(t)

g2(t) = Cs(t)

(S4.2.1)

where Cb is the concentration of the microbes and Cs denotes the concentration
of substrate. Both states can be observed. The model parameters and their
nominal values can be found in Table S4.2.1
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S B

Figure S4.2.1: Biomass batch growth model. Substrate S is transferred to
biomass B.

Table S4.2.1: Biomass batch growth model parameters, nominal values and
optimization bounds.

Par. id Nominal UB LB

µmax 0.4 100 10−5

Ks 5 100 10−5

Kd 0.05 100 10−5

yield 0.5 100 10−5

S4.2.2 Experimental conditions

Here we discuss how the data was generated for model calibration and cross-
validation.

S4.2.2.1 Model calibration

The model equations were solved using the nominal parameters and the ini-
tial conditions Cb(0) = 2 (g/l) and Cs(0) = 30 (g/l) for the time interval
t ∈ [0, 12] hours. The observation functions were evaluated at time points
ti = 2, 4, 6, 8, 10, 12 to obtain their nominal values. Then random numbers
were added to the nominal values to simulate the measurement error. The dis-
tributions were taken as Gaussian with zero mean and the following standard
deviation: σij = 0.1gj(ti) + 0.1, aproximately resulting in a constant noise to
signal ratio (proportional error) with a threshold at 0.1, i.e. the signals smaller
than 0.1 cannot be decomposed from the measurement noise. Small negative
values were corrected by taking their absolute value. To obtain N calibration
datasets with different noise realization, the procedure was repeated N times.

S4.2.2.2 Model cross-validation

To obtain data for model cross-validation the same procedure described above
was used, but the initial conditions of the states were also randomly chosen from
a meaningful range. The exact values can be found in Additional File 2. Ten
datasets were generated for model cross-validation.
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S4.2.3 Calibration

All the 4 model parameters were estimated in this case study. The bounds of
the parameters for the optimization are given in Table S4.2.1.

S4.3 FitzHugh-Nagumo model (FHN)

S4.3.1 Mathematical model

The FitzHugh-Nagumo model, as presented in [2, 3], describes the voltage (V)–
current (R) relationship across an exon membrane. The model equations with
one observable are:

dV

dt
= γ(V − V 3/3 +R)

dR

dt
= −1/γ(V − α+ βR)

g1(t) = V (t)

(S4.3.2)

The model parameters to be estimated, are listed in Table S4.3.2.

Table S4.3.2: FitzHugh-Nagumo model parameters to be estimated: nominal
values and bounds.

Par. id Nominal UB LB

α 0.2 105 10−5

β 0.2 105 10−5

γ 3 105 10−5

S4.3.2 Experimental conditions

S4.3.2.1 Calibration

The model equations were solved using the nominal parameters, the initial
conditions V (0) = −1 and R(0) = 1 for the time interval t ∈ [0, 20] unit.
The observation function was evaluated at 6 time points equidistantly as t =
linspace(1, 20, 6) to obtain its nominal values. Then the experimental data was
generated similarly as in the first case study, with a standard deviation of 10%
of the nominal signal level, and a detection threshold for the observable of 0.1.
This procedure was used to generate 6 data points for each of the 10 model
calibration problems.

S4.3.2.2 Cross-validation

We followed the same procedure as for the model calibration, but the initial
conditions of the states were randomly changed inside a meaningful range.

S4.3.3 Calibration

In model calibration, all the 3 model parameters were estimated. The parameter
bounds for the optimization algorithm can be found in Table S4.3.2.
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S4.4 Kholodenko MAPK signalling pathway (MAPK)

S4.4.1 Mathematical model

This case study considers the MAPK signalling pathway model originally pre-
sented in [4]. This model is also available from the Biomodels database [5]
(BIOMD0000000010 - Kholodenko2000 - Ultrasensitivity and negative feedback
bring oscillations in MAPK cascade). The model equations are

RJ0 = J0V1
x1

(1 + (x8/J0Ki)J0n)(J0K1 + x1)

RJ1 = J1V2
x2

J1KK2 + x2

RJ2 = J2k3
x2x3

J2KK3 + x3

RJ3 = J3k4
x2x4

J3KK4 + x4

RJ4 = J4V5
x5

J4KK5 + x5

RJ5 = J5V6
x4

J5KK6 + x4

RJ6 = J6k7
x5x6

J6KK7 + x6

RJ7 = J7k8
x5x7

J7KK8 + x7

RJ8 = J8V9
x8

J8KK9 + x8

RJ9 = J9V10
x7

J9KK10 + x7

dx1
dt

= −RJ0 +RJ1

dx2
dt

= RJ0 −RJ1

dx3
dt

= −RJ2 +RJ5

dx4
dt

= RJ2 −RJ3 +RJ4 −RJ5

dx5
dt

= RJ3 −RJ4

dx6
dt

= −RJ6 +RJ9

dx7
dt

= RJ6 −RJ7 +RJ8 −RJ9

dx8
dt

= RJ7 −RJ8,

where the state variable x1, x2 . . .x8 denote the concentration of species Mos,
Mos-P, Mek1, MKK-P, Mek1-PP, Erk2, Erk2-P, Erk2-PP, respectively. The
model parameters are collected in Table S4.4.3. It is assumed that only the state
variables x2 (Mos-P) and x7 (Erk2-P) can be measured in the experiments.

S4.4.2 Experimental conditions

S4.4.2.1 Calibration

The model equations were solved using the nominal parameters, and the ini-
tial conditions x(0) = [90, 10, 280, 10, 10, 280, 10, 10]T for the time interval
t ∈ [0, 1000] (arbitrary units). The two observation functions were evaluated
at 10 time points for ti = [50, 100, 150, 200, 300, 400, 500, 600, 800, 1000] to
obtain the nominal values. Psuedo-experimental data were generated as in the
first case study, with a standard deviation of 10% of the nominal signal level
and a detection threshold of 0.5. This procedure generated 20 data points (2
observables and 10 time points per observable) for model calibration.

S4.4.2.2 Cross-validation

For the model cross-validation we generated the data similarly as for the model
calibration, but the initial conditions of the states were randomly changed within
a meaningful range. The exact values used can be found in Additional File 2.
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Table S4.4.3: Kholodenko MAPK Signalling pathway model parameters. The
parameters for which the lower bounds (LB) and upper bounds (UB) are given
are the estimated parameters. The other parameters are fixed at their nominal
values.

Param. id. Nominal LB UB

J0 V1 2.5 50 0.01
J0 Ki 9
J0 n 1

J0 K1 10
J1 V2 0.25 50 0.01

J1 KK2 8
J2 k3 0.025

J2 KK3 15
J3 k4 0.025

J3 KK4 15
J4 V5 0.75 50 0.01

J4 KK5 15
J5 V6 0.75 50 0.01

J5 KK6 15
J6 k7 0.025

J6 KK7 15
J7 k8 0.025

J7 KK8 15
J8 V9 0.5 50 0.01

J8 KK9 15
J9 V10 0.5 50 0.01

J9 KK10 15
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S4.4.3 Calibration

In the model calibration procedure 6 model parameters were estimated. The
parameter bounds for the optimization algorithm can be found in Table S4.3.2.
The estimated parameters are the ones for which the bounds are given in the
table.

S4.5 Goodwin oscillator model (GOsc)

S4.5.1 Mathematical model

The Goodwin oscillator [6] is one of the simplest models of oscillatory genetic
networks (see Figure S4.5.2). In its original form, three state variables x1, x2
and x3 describe RNA, protein and an end product concentrations. The model
equations with two observables can be stated as

dx1
dt

= k1K
n
i /(K

n
i + xn3 )− k2x1

dx2
dt

= k3x1 − k4x2
dx3
dt

= k5x2 − k6x3

g1(t) = x1(t)

g2(t) = x3(t)

(S4.5.3)

where we assumed that the RNA level and the end product concentration can
be measured. The model parameters are given in Table S4.5.4

S4.5.2 Experimental conditions

S4.5.2.1 Calibration

The model equations were solved using nominal parameters and initial condi-
tions x1(0) = 0.1, x2(0) = 0.2, x3 = 2.5 for the time interval t ∈ [0, 240] units.
The observation functions were evaluated at 10 time points equidistantly as
t = linspace(0, 240, 10) to obtain their nominal values. Pseudo-experimental
data was generated as above with standard deviation 10% of the nominal signal
level and detection thresholds of 0.003 and 0.1 for the two observables. This
procedure was used to generate 20 data points for model calibration.

x1

x2 x3

Figure S4.5.2: Schematic reaction scheme of Goodwin’s oscillator.
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Table S4.5.4: Goodwin oscillator: model parameters, nominal values and opti-
mization bounds.

Par. id Nominal UB LB

k1 1 1000 0.001
k2 0.1 1000 0.001
k3 1 1000 0.001
k4 0.1 1000 0.001
k5 1 1000 0.001
k6 0.1 1000 0.001
Ki 1 1000 0.001
n 10 12 1

S4.5.2.2 Cross-validation

For model cross-validation, we generated pseudo-data similarly as for model
calibration, but the initial conditions of the states were randomly changed inside
a meaningful range. The exact values used are given in Additional File 2.

S4.5.3 Calibration

All seven parameters were estimated in the model calibration procedure. The
parameter bounds for the optimization algorithm can be found in Table S4.5.4.
Although the model is small, its oscillatory nature results in objective functions
with many local minima.

S4.6 TGF– β signalling pathway model (TGFB)

S4.6.1 Mathematical model

Geier and co-authors [7] presented a tutorial paper on parameter estimation in
kinetic models where this TGF-β signalling pathway model [8] was used as a
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case study. The dynamic model equations are

r1 = k1CTGFb TGFbR

r2 = k2CTGFbRCTGFb

r3 = k3CTGFb TGFbR(1− e−(
t−k20
k21

)10)

r4 = k4CTGFb TGFbR P

r5 = k5CTGFb TGFbR PCI Smad

r6 = k6CI Smad TGFb TGFbR P

r7 = k7CSmadCTGFb TGFbR P

r8 = k8CSmad

r9 = k9CSmad N

r10 = k102CSmad PCSmad P

r11 = k11CSmad P Smad P

r12 = k10CSmad PCCoSmad

r13 = k11CSmad P CoSmad

r14 = k8CCoSmad

r15 = k9CCoSmad N

r16 = k12k8CSmad P Smad P

r17 = k8CSmad P

r18 = k9CSmad P N

r19 = k12k8CSmad P CoSmad

r20 = k13CSmad P N

r21 = k102CSmad P NCSmad P N

r22 = k11CSmad P Smad P N

r23 = k10CSmad P NCCoSmad N

r24 = k11CSmad P CoSmad N

r25 = k14
C2

Smad P CoSmad N

C2
Smad P CoSmad N + k215

r26 = k16CI Smad mRNA1

r27 = k17CI Smad mRNA2

r28 = k18CI Smad mRNA2

r29 = k19CI Smad
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dCTGFb

dt
= r1 − r2

dCdGFbR

dt
= r1 − r2

dCTGFb TGFbR

dt
= −r1 + r2 − r3 + r4 + r6

dCTGFb TGFbR P

dt
= r3 − r4 − r5

dCI Smad TGFb TGFbR P

dt
= r5 − r6

dCSmad

dt
= −r7 − r8 + r9

dCSmad P

dt
= r7 − r10 + r11 − r12 + r13 − r17 + r18

dCCoSmad

dt
= −r12 + r13 − r14 + r15

dCSmad P Smad P

dt
= r10 − r11 − r16

dCSmad P CoSmad

dt
= r12 − r13 − r19

dCSmad N

dt
= r8 − r9 + r20

dCSmad P Smad P N

dt
= r16 + r21 − r22

dCSmad P N

dt
= r17 − r18 − r20 − r21 + r22 − r23 + r24

dCSmad P CoSmad N

dt
= r19 + r23 − r24

dCCoSmad N

dt
= r14 − r15 − r23 + r24

dCI Smad mRNA1

dt
= r25 − r26

dCI Smad mRNA2

dt
= r26 − r27

dCI Smad

dt
= r28 − r29 − r5 + r6.

As in [7], we also assume that all the concentrations, except the Smad RNAs
(CI Smad mRNA1 and CI Smad mRNA2), can be observed in the experiments. The
model parameters can be found in Table S4.6.5.

S4.6.2 Experimental conditions

Following the procedure described in [7], the initial conditions of the dynamic
state variables were determined by finding their steady states. For this cal-
culation, we took CdGFbR(0) = 1, CSmad(0) = 60 and CCoSmad(0) = 60, the
initial concentrations of the other species as zero, and k3 = 0 to temporarily
remove the stimuli from the model. Then, simulations were performed for a
suitable long time to obtain the steady state values of the variables. Finally,
the value of CTGFb was set to 1.0 and the nominal value (0.01) of k3 was re-set.
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Table S4.6.5: TGF–β signalling pathway parameters

Par. id Nominal UB LB

k1 0.00015 0.1 10−6

k2 0.023 1 0.0001
k3 0.01 not estimated
k4 0.01 1 10−6

k5 0.01 1 0.0001
k6 0.1 1 10−6

k7 0.000404 1 10−6

k8 0.0026 1 10−5

k9 0.0056 1 10−5

k10 0.002 1 10−6

k11 0.016 1 10−5

k12 5.7 100 0.1
k13 0.00657 1 10−5

k14 0.0017 1 10−5

k15 1 100 0.001
k16 0.0008 0.1 10−5

k17 0.001 0.1 10−5

k18 0.0021 0.1 10−5

k19 0.001 0.1 10−5

k20 9000
not estimated

k21 1800

The numerical values of the steady state initial condition can be seen in Table
S4.6.6.

The model equations were solved using the nominal parameters and the
nominal initial conditions for the time interval t ∈ [0, 18000] seconds. The
observation functions were evaluated at 15 time points equidistantly as t =
linspace(0, 18000, 15) to obtain their nominal values. Pseudo-experimental data
was generated using a standard deviation of 10% of the nominal signal level,
while the detection thresholds for each observable was set to approximately
1% of their maximum level. This procedure generated 240 data points (16
observables, 15 time points per observable) for the model calibration.

S4.6.2.1 Cross-validation

We generated the data as in the previous subsection but the initial conditions of
the states were randomly changed inside a meaningful range. The stimuli dura-
tion and initiation time parameters (k20 and k21) were also randomly changed
to generate 10 datasets for model cross-validation.

S4.6.3 Calibration

We used the same bounds on the parameters as reported in [7]. Note that
parameters k3, k20 and k21 are related to the Smad inhibition stimuli and they
are not estimated. Parameter k3 determines the strength of the inhibitor, while
k20 and k21 respectively controls the appearance and duration of the inhibition.
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Table S4.6.6: Nominal initial conditions for the TGF-β Pathway model

State name Nominal initial condition

CTGFb 1.0
CTGFbR 1.0

CTGFb TGFbR 0.0
CTGFb TGFbRP 0.0

CI Smad TGFb TGFbR P 0.0
CSmad 40.98
CSmadP

0.0
CCoSmad 34.15

CSmad P Smad P 0.0
CSmad P CoSmad 0.0

CSmad N 19.02
CSmad P Smad P N 0.0

CSmad P N 0.0
CSmad P CoSmad N 0.0

CCoSmad N 15.85
CI Smad mRNA1 0.0
CI Smad mRNA2 0.0

CI Smad 0.0

S4.7 Three-steps Metabolic Pathway (TSMP)

S4.7.1 Mathematical model

This model describes a simple pathway with three enzymatic steps, as described
in Moles et al[9]. The scheme of the pathway is shown in Figure S4.7.3.
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Figure S4.7.3: Three step pathway. S and P are the pathway substrate and
product; M1 and M2 are intermediate metabolites of the pathway; E1, E2, and
E3 are the enzymes; G1, G2, and G3 are the mRNA species for the enzymes, as
described in [9]

The dynamics are given by the following system of differential equations:

Ġ1 =
V1

1 + ( P
Ki1

)ni1 + (Ka1

S )na1
− k1G1

Ġ2 =
V2

1 + ( P
Ki2

)ni2 + (Ka2

M1
)na2

− k2G2

Ġ3 =
V3

1 + ( P
Ki3

)ni3 + (Ka3

M2
)na3

− k3G3

Ė1 =
V4G1

K4 +G1
− k4E1

Ė2 =
V5G2

K5 +G2
− k5E2

Ė3 =
V6G3

K6 +G3
− k6E3

Ṁ1 =
kcat1E1( 1

Km1
)(S −M1)

1 + S
Km1

+ M1
Km2

−
kcat2E2

1
Km3

(M1 −M2)

1 + M1

Km3
+ M2

Km4

Ṁ2 =
kcat2E2

1
Km3

(M1 −M2)

1 + M1

Km3
+ M2

Km4

−
kcat3E3

1
Km5

(M2 − P )

1 + M2

Km5
+ P

Km6

S4.7.2 Experimental condition

S4.7.2.1 Calibration

Here we considered a variant with eight different experimental conditions, de-
fined by different constant levels of substrate (S) and product (P), as given in
the lower part of Table S4.7.7 (indicated by calib exp1 – calib exp8). The model
equations with the given stimuli levels were solved using the nominal parame-
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ters, and the initial conditions in Table S4.7.7 for the time interval t ∈ [0, 120].
The observation functions were evaluated for each experiment at 21 time points
t = linspace(0, 120, 21) to obtain the nominal values. Pseudo-experimental data
was generated using Gaussian random errors with standard deviation of 10% of
the nominal signal level. The detection thresholds for each observable was set
to 2% of their average nominal values. This procedure resulted in 1344 data
points (8 experiments, 8 observables and 21 time points for each) for model
calibration.

S4.7.2.2 Cross-validation

For model cross-validation we generated the data similarly as for model cali-
bration, but changing the P and S levels. Their numerical values are listed in
Table S4.7.7 (indicated by valid exp1 – valid exp8)

S4.7.3 Calibration

The calibrated parameters are listed in the top part of Table S4.7.7. Lower and
upper bounds for each parameter are reported in Additional File 2.
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Table S4.7.7: Nominal values of parameters and (S,P) values for the 8 experi-
ments considering the 3-Steps Metabolic Pathway

par. name value par. name value par. name value

V1 1.0 V3 1.0 V6 0.1
Ki1 1.0 Ki3 1.0 K6 1.0
ni1 2.0 ni3 2.0 k 6 0.1

Ka1 1.0 Ka3 1.0 kcat1 1.0
na1 2.0 na3 2.0 Km1 1.0
k 1 1.0 k 3 1.0 Km2 1.0
V2 1.0 V4 0.1 kcat2 1.0

Ki2 1.0 K4 1.0 Km3 1.0
ni2 2.0 k 4 0.1 Km4 1.0

Ka2 1.0 V5 0.1 kcat3 1.0
na2 2.0 K5 1.0 Km5 1.0
k 2 1.0 k 5 0.1 Km6 1.0

calibration inp.: [S] [P] cross-validation inp.: [S] [P]
calib exp. #1 0.1 0.05 valid exp. #1 0.1 0.13572
calib exp. #2 0.1 1.0 valid exp. #2 0.1 0.3684
calib exp. #3 0.464 0.13572 valid exp. #3 0.464 0.05
calib exp. #4 0.464 1.0 valid exp. #4 0.464 0.3684
calib exp. #5 2.15 0.05 valid exp. #5 2.15 0.13572
calib exp. #6 2.15 0.3684 valid exp. #6 2.15 1.0
calib exp. #7 10.0 0.3684 valid exp. #7 10.0 0.05
calib exp. #8 10.0 1.0 valid exp. #8 10.0 0.13572

States initial cond. States initial cond.
G1 0.6667 E2 0.3641
G2 0.5725 E3 0.2946
G3 0.4176 M1 1.419
E1 0.4 M2 0.9346
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S4.8 Chemotaxis Pathway model (CHM)

S4.8.1 Mathematical model

This case study is based on the bacterial chemotaxis model by Bray et al
[10]. The model describes the short term (without adaptation) bacterial re-
sponse to aspartate (Asp) and nickel (Ni2+) ion stimulus. The Asp binding to a
transmembrane protein complex initiates an intracellular phopshorylation cas-
cade, which changes the rotational behaviour of the flagellar motor and thus
the swimming behaviour of the bacterium (see the reaction scheme in Fig-
ure S4.8.4). The mathematical model is available in the Biomodels Database
(BIOMD0000000404 - Bray1993 chemotaxis).

The definitions of the reactions and the balance equations for the chemical
species are as follows. The names of the chemical species encoded by the state
variables can be found in Table S4.8.9. Apart from the swimming behaviour of
the bacteria, we further assume that some phosphorylated species (listed in the
same table) can be observed. The nominal values of the parameters are listed
in Table S4.8.8.

Figure S4.8.4: Chemotaxis pathway scheme adapted from [10]
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rp r1 =cell · (rp r1 kcat · p2 · x16)

rp r2 =cell · (x13 · x16 · rp r2 kcat · p2)

rp r3 =cell · (x15 · x16 · rp r3 kcat · p2)

rp r4 =cell · rp r4 k1 · x14 · x22

rp r5 =cell · rp r5 k1 · x17 · x21

rp r6 =cell · (rp r6 kcat · p2 · x21)

rp r7 =cell · rp r7 k1 · x22

rp r8 =cell · rp r8 k1 · x22 · x20

rp r9 =cell · rp r9 k1 · x17 · x18

rp r10 =cell · rp r10 k1 · x19

rr r1 =cell · (rr r1 k1 · x2 · asp− rr r1 k2 · x3)

rr r2 =cell · (rr r2 k1 · x2 · ni− rr r2 k2 · x4)

rr r3 =cell · (rr r3 k1 · x2 · x5− rr r3 k2 · x6)

rr r4 =cell · (rr r4 k1 · x2 · x16− rr r4 k2 · x9)

rr r5 =cell · (rr r5 k1 · x5 · x16− rr r5 k2 · x12)

rr r6 =cell · (rr r6 k1 · x6 · x16− rr r6 k2 · x13)

rr r7 =cell · (rr r7 k1 · x9 · x5− rr r7 k2 · x13)

rr r8 =cell · (rr r8 k1 · x2 · x12− rr r8 k2 · x13)

rr r9 =cell · (rr r9 k1 · x3 · x5− rr r9 k2 · x7)

rr r10 =cell · (rr r10 k1 · x3 · x16− rr r10 k2 · x10)

rr r11 =cell · (rr r11 k1 · x7 · x16− rr r11 k2 · x14)

rr r12 =cell · (rr r12 k1 · x10 · x5− rr r12 k2 · x14)

rr r13 =cell · (rr r13 k1 · x3 · x12− rr r13 k2 · x14)

rr r14 =cell · (rr r14 k1 · x4 · x5− rr r14 k2 · x8)

rr r15 =cell · (rr r15 k1 · x4 · x16− rr r15 k2 · x11)

rr r16 =cell · (rr r16 k1 · x8 · x16− rr r16 k2 · x15)

rr r17 =cell · (rr r17 k1 · x11 · x5− rr r17 k2 · x15)

rr r18 =cell · (rr r18 k1 · x4 · x12− rr r18 k2 · x15)

rm r1 =cell · (ka · (x23 · x22− κ/4 · x24)/cell)

rm r2 =cell · (ka · (x24 · x22− 2 · α · κ/3 · x25)/cell)

rm r3 =cell · (ka · (x25 · x22− 3 · α · α · κ/2 · x26)/cell)

rm r4 =cell · (ka · (x26 · x22− 4 · α · α · α · κ · x27)/cell)

rr 1 =cell · (rr 1 k1 · x9 · asp− rr 1 k2 · x10)

rr 2 =cell · (rr 2 k1 · x6 · asp− rr 2 k2 · x7)

rr 3 =cell · (rr 3 k1 · x13 · asp− rr 3 k2 · x14)
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dx2

dt
=(1/cell) · (−rr r1 − rr r2 − rr r3 − rr r4 − rr r8)

dx3

dt
=(1/cell) · (rr r1 − rr r9 − rr r10 − rr r13)

dx4

dt
=(1/cell) · (rr r2 − rr r14 − rr r15 − rr r18)

dx5

dt
=(1/cell) · (−rr r3 − rr r5 − rr r7 − rr r9 − rr r12 − rr r14 − rr r17)

dx6

dt
=(1/cell) · (rr r3 − rr r6 − rr 2)

dx7

dt
=(1/cell) · (rr r9 − rr r11 + rr 2)

dx8

dt
=(1/cell) · (rr r14 − rr r16)

dx9

dt
=(1/cell) · (rr r4 − rr r7 − rr 1)

dx10

dt
=(1/cell) · (rr r10 − rr r12 + rr 1)

dx11

dt
=(1/cell) · (rr r15 − rr r17)

dx12

dt
=(1/cell) · (rr r5 − rr r8 − rr r13 − rr r18)

dx13

dt
=(1/cell) · (rr r6 + rr r7 + rr r8 − rr 3)

dx14

dt
=(1/cell) · (−rp r4 + rp r4 + rr r11 + rr r12 + rr r13 + rr 3)

dx15

dt
=(1/cell) · (rr r16 + rr r17 + rr r18)

dx16

dt
=(1/cell) · (−rp r1 − rp r2 − rp r3 + rp r5 + rp r9 − rr r4 − rr r5 − rr r6 − rr r10

− rr r11 − rr r15 − rr r16)

dx17

dt
=(1/cell) · (rp r1 + rp r2 + rp r3 − rp r5 − rp r9)

dx18

dt
=(1/cell) · (−rp r9 + rp r10)

dx19

dt
=(1/cell) · (rp r9 − rp r10)

dx20

dt
=(1/cell) · (−rp r8 + rp r8)

dx21

dt
=(1/cell) · (rp r4 − rp r5 − rp r6 + rp r7 + rp r8)

dx22

dt
=(1/cell) · (−rp r4 + rp r5 + rp r6 − rp r7 − rp r8 − rm r1 − rm r2 − rm r3 − rm r4)

dx23

dt
=(1/cell) · (−rm r1)

dx24

dt
=(1/cell) · (rm r1 − rm r2)

dx25

dt
=(1/cell) · (rm r2 − rm r3)

dx26

dt
=(1/cell) · (rm r3 − rm r4)

dx27

dt
=(1/cell) · (rm r4)

S4.8.2 Experimental conditions

S4.8.2.1 Calibration

We considered two experimental conditions, each one corresponding to a dif-
ferent stepwise profile of the Asp level. The 3-step concentration profiles of
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Table S4.8.8: Parameters of the chemotaxis pathway model

Param. Name Nom. value Param. Name Nom. value

p1 rp r1 kcat 0.001 p30 rr r10 k2 1
p2 rp r2 kcat 75000 p31 rr r11 k1 400000
p3 rp r3 kcat 200000 p32 rr r11 k2 1
p4 rp r4 k1 100000000 p33 rr r12 k1 400000
p5 rp r5 k1 200000 p34 rr r12 k2 1
p6 rp r6 kcat 0 p35 rr r13 k1 400000
p7 rp r7 k1 0.037 p36 rr r13 k2 1
p8 rp r8 k1 500000 p37 rr r14 k1 0.1
p9 rp r9 k1 1000000 p38 rr r14 k2 1

p10 rp r10 k1 1 p39 rr r15 k1 0.01
p11 rr r1 k1 1000000 p40 rr r15 k2 1
p12 rr r1 k2 1 p41 rr r16 k1 0.4
p13 rr r2 k1 1000 p42 rr r16 k2 1
p14 rr r2 k2 1 p43 rr r17 k1 0.4
p15 rr r3 k1 100000 p44 rr r17 k2 1
p16 rr r3 k2 1 p45 rr r18 k1 0.4
p17 rr r4 k1 10000 p46 rr r18 k2 1
p18 rr r4 k2 1 p47 rr 1 k1 1000000
p19 rr r5 k1 100000 p48 rr 1 k2 1
p20 rr r5 k2 1 p49 rr 2 k1 1000000
p21 rr r6 k1 400000 p50 rr 2 k2 1
p22 rr r6 k2 1 p51 rr 3 k1 1000000
p23 rr r7 k1 400000 p52 rr 3 k2 1
p24 rr r7 k2 1 p53 cell 1.41E-15
p25 rr r8 k1 400000 p54 α 0.14
p26 rr r8 k2 1 p55 κ 2.25E-07
p27 rr r9 k1 100000 p56 ka 0.1
p28 rr r9 k2 1 p57 ni 0
p29 rr r10 k1 10000 p58 p2 0.997
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Asp for these two experiments are given in the lower part of Table S4.8.9 (in-
dicated by calib exp1 and calib exp2). The model equations with the given
stimuli profiles were solved using the nominal parameters, and the initial condi-
tions in Table S4.8.9 for the time interval t ∈ [0, 180] seconds. The observation
functions were evaluated at 10 time points in each experiment at time points
t = linspace(0, 180, 10) to obtain the nominal values. Pseudo-experimental data
was generated with standard deviation of 5% of the nominal signal level. Detec-
tion threshold for each observable was set to 2% of the maximum observation
values. This procedure resulted in 160 data points (2 experiments, 8 observables
and 10 time points for each) for model calibration.

S4.8.2.2 For cross-validation

For model cross-validation, we generated pseudo-data as above but with changed
stimulus level. Their numerical values are listed in Table S4.8.9 (indicated by
valid exp1 and valid exp2). Numerical values can be found in Additional File
2.

S4.8.3 Calibration

Before the model calibration a parameter sensitivity analysis was performed.
This showed the lack of sensitivity of the outputs with respect to some parame-
ters. These parameters belong to the Ni stimulus reactions and the correspond-
ing part of the pathway. Since in the experiments considered no Ni stimulus is
applied, these parameters are inactive and their values cannot be estimated.

The remaining 38 estimated parameters are p1, p2, p4, p5, p7-p12, p15-p36
and p47-p52 (see Table S4.8.8 for the naming convention). The lower and upper
bounds of these parameters were set as LB = pnom×10−5 and UB = pnom×105,
where pnom is the nominal value of the parameters.

Further, note that the parameters have very different ranges which would
lead to numerical issues in the optimization. To avoid this, the parameters
were scaled for the calibration, such that their range should overlap. The scaled
values are reported in the Additional File 2.
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Table S4.8.9: Initial values and input variables for the chemotaxis model

States Name Initial value States Name Initial value

x2 T 3.12E-06 x15 Tni WA 0
x3 Tasp 0 x16 A 3.00E-06
x4 Tni 0 x17 Ap 3.48E-08
x5 W 2.89E-06 x18 B 1.93E-06
x6 TW 5.91E-07 x19 Bp 6.87E-08
x7 Tasp W 0 x20 Z 2.00E-05
x8 Tni W 0 x21 Y 9.90E-06
x9 TA 4.44E-07 x22 Yp 7.00E-09

x10 Tasp A 0 x23 M 6.24E-09
x11 Tni A 0 x24 MYp 7.77E-10
x12 WA 6.78E-07 x25 MYpYp 2.99E-10
x13 TWA 8.47E-07 x26 MYpYpYp 3.78E-10
x14 Tasp WA 0.00E+00 x27 MYpYpYpYp 2.31E-09

Input: stepwise function of aspartate level
time interval(s): [0–60] [60–120] [120–180]

calib exp1 [asp] 0 3.33 · 10−8 6.60 · 10−8

calib exp2 [asp] 2 · 10−7 3.33 · 10−8 10−7

valid exp1 [asp] 0 10−7 2 · 10−7

valid exp2 [asp] 3 · 10−7 3.33 · 10−8 1.50 · 10−7

Observables:
[Ap], [Bp], [Yp], [MYp], [MYpYp], [MYpYpYp], [MYpYpYpYp]

Bias = [M ]+[MY p]
[M ]+[MY p]+[MY pY p]+[MY pY pY p]+[MY pY pY pY p]
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